中学网校

中学网校 > 高考网校 > 高三数学视频课程

简单学习网高考热门试听

高三数学视频课程

高三数学视频课程 高中网上学习,学生认真学,家长更省心,简单学习网是专注于中学视频辅导的专业辅导网站,高中网上课程可以免费学习一周,在家也能轻松学,成绩提升更有效!

第二章基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1)?;

(2);

(3).

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1

0<><>< p="">

图象特征

函数性质

向x、y轴正负方向无限延伸

函数的定义域为R

图象关于原点和y轴不对称

非奇非偶函数

函数图象都在x轴上方

函数的值域为R

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升

自左向右看,

图象逐渐下降

增函数

减函数

在第一象限内的图象纵坐标都大于1

在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡

图象上升趋势是越来越缓

函数值开始增长较慢,到了某一值后增长速度极快;

函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上,值域是或;

(2)若,则;取遍所有正数当且仅当;

(3)对于指数函数,总有;

(4)当时,若,则;

二、对数函数

(一)对数

1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)

说明:1注意底数的限制,且;

2;

3注意对数的书写格式.

两个重要对数:

1常用对数:以10为底的对数;

2自然对数:以无理数为底的对数的对数.

对数式与指数式的互化

对数式指数式

对数底数←→幂底数

对数←→指数

真数←→幂

(二)对数的运算性质

如果,且,,,那么:

1?+;

2-;

3.

注意:换底公式

(,且;,且;).

利用换底公式推导下面的结论(1);(2).

(二)对数函数

1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0, ∞).

注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如:,都不是对数函数,而只能称其为对数型函数.

2对数函数对底数的限制:,且.

2、对数函数的性质:

a>1

0<><>< p="">

图象特征

函数性质

函数图象都在y轴右侧

函数的定义域为(0,+∞)

图象关于原点和y轴不对称

非奇非偶函数

向y轴正负方向无限延伸

函数的值域为R

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升

自左向右看,

图象逐渐下降

增函数

减函数

第一象限的图象纵坐标都大于0

第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0

第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0, ∞)都有定义,并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

第三章函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

阅读全文

开通网校试学账号

网校套餐推荐

精选视频试听全科课程首周免费听

高考数学(理)同步提高

高考数学(文)同步提高

高考语文同步提高

高考英语同步提高

高考生物同步提高

高考历史满分冲刺

高考政治满分冲刺

高考地理同步提高

高三热门课程更多课程>>

高三四科强化班

¥3600

包含:高三上学期全部课程;高三下学期全部课程;高二数学、英语下学期

800讲课程免费领

高三物理同步课程

¥700

包含:同步基础、同步提高、满分冲刺课程

800讲课程免费领

高三数学同步课程

¥700

包含:同步基础、同步提高、满分冲刺课程

800讲课程免费领

高三英语同步课程

¥700

包含:同步基础、同步提高、满分冲刺课程

800讲课程免费领

网校推荐

状元高分榜学员分享

更多分享

相关文章