简单学习网中学辅导,经验丰富老师授课,快速找出学生落后原因,解决学生学科短板问题,帮助学员快速提分,冲刺高考!
1、函数的局部性质——单调性
设函数y=f(x)的概念域为I,假如对应概念域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间D上是增函数,D是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)>f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。
⑴函数区间单调性的判断思路
ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。
ⅱ 做差值f(x1)-f(x2),并开展变形和配方,变为易于判断正负的形式。
ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。
⑵复合函数的单调性
复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,通过原则“减偶则增,减奇则减”。
⑶注意事项
函数的单调区间只能是其概念域的子区间,不能把单调性相同的区间和在一起写成并集,假如函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。